शब्दकोष

बाईं ओर एक कीवर्ड चुनें ...

मंडलियां और पाईशंकुधारी खंड

पढ़ने का समय: ~20 min

सर्कल चार अलग-अलग आकृतियों में से एक है जिसे एक शंकु के माध्यम से "स्लाइस" का उपयोग करके बनाया जा सकता है। यह एक मशाल के प्रकाश शंकु का उपयोग करके दिखाया जा सकता है:

Circle

Ellipse

Parabola

Hyperbola

यदि आप टॉर्च को नीचे की ओर इंगित करते हैं, तो आपको एक दिखाई देता है प्रकाश का यदि आप शंकु को झुकाते हैं, तो आपको एक दीर्घवृत्त मिलता है । यदि आप इसे आगे भी झुकाते हैं, तो आपको एक पेराबोला या एक हाइपरबोला मिलता है

सामूहिक रूप से, इन चार आकृतियों को शंकुधारी खंड कहा जाता है । भले ही वे सभी बहुत अलग दिखते हैं, वे बारीकी से संबंधित हैं: वास्तव में, वे सभी एक ही समीकरण का उपयोग करके उत्पन्न हो सकते हैं!

शंकु वर्गों का अध्ययन सबसे पहले पेरगा के प्राचीन ग्रीक गणितज्ञ एपोलोनियस द्वारा किया गया था, जिन्होंने उन्हें अपने असामान्य नाम भी दिए थे।

बाद के पाठ्यक्रमों में, आप परवल और हाइपरबोलस के बारे में अधिक जानेंगे। अभी के लिए, आइए दीर्घवृत्त पर एक करीब से नजर डालें।

अनेक बिंदु

एक दीर्घवृत्त लगभग एक "लम्बी वृत्त" जैसा दिखता है। वास्तव में, आप इसके बारे में दो केंद्रों के साथ एक सर्कल के रूप में सोच सकते हैं - इन्हें फोकल पॉइंट कहा जाता है। जैसे किसी वृत्त के प्रत्येक बिंदु की उसके केंद्र से समान दूरी होती है, वैसे ही एक दीर्घवृत्त के प्रत्येक बिंदु की दूरी उसके दो केंद्र बिंदुओं के समान होती है

यदि आपके पास दो निश्चित बिंदुओं से जुड़ी एक लंबी स्ट्रिंग है, तो आप तारों की अधिकतम पहुंच का पता लगाकर एक सही दीर्घवृत्त खींच सकते हैं:

जल्द ही आ रहा है: एलीपेस इंटरेक्टिव ड्राइंग

कई अन्य भौतिक निरूपण हैं कि आप कैसे एक दीर्घवृत्त आकर्षित कर सकते हैं:

Gears

Trammel

Disk

Swing

ग्रहों की परिक्रमा

आप इस पाठ्यक्रम की शुरुआत से याद कर सकते हैं, कि प्राचीन ग्रीक खगोलविदों का मानना था कि पृथ्वी ब्रह्मांड के केंद्र में है और सूर्य, चंद्रमा और ग्रह पृथ्वी के चारों ओर गोलाकार कक्षाओं में घूमते हैं।

दुर्भाग्य से, आकाश के खगोलीय अवलोकन ने इसका समर्थन नहीं किया। उदाहरण के लिए, सूर्य वर्ष के कुछ हिस्सों के दौरान बड़ा और दूसरों के दौरान छोटा दिखाई दिया। एक वृत्त पर, प्रत्येक बिंदु पर होना चाहिए इसके केंद्र से दूरी।

Nica के ग्रीक खगोलशास्त्री हिप्पार्कस

इसे ठीक करने के लिए, खगोलविदों ने सौर मंडल के अपने मॉडल में एपिकसाइकल को जोड़ा: ग्रह पृथ्वी के चारों ओर एक बड़े वृत्त पर चलते हैं, जबकि एक साथ एक छोटे वृत्त पर घूमते हैं। बहुत जटिल होते हुए, यह 1000 वर्षों से अधिक समय तक हमारे ब्रह्मांड का सबसे व्यापक रूप से स्वीकृत मॉडल था:

यह ग्रह बनाता है ${n} बड़े सर्कल ( deferent ) के चारों ओर एक रोटेशन के दौरान छोटे सर्कल ( एपिसायकल ) के आसपास घुमाव।

जियुस्ट्रिक मॉडल में एपिक चक्रों की एक 16-शताब्दी की ड्राइंग। ग्रीक शब्द "प्लैनेट्स" का अर्थ है "घूमना"।

समय के साथ, लोगों ने महसूस किया कि पृथ्वी सूर्य ( परिकल्पना मॉडल ) की परिक्रमा करने वाले कई ग्रहों में से एक है, लेकिन यह 1609 तक नहीं था, खगोलविज्ञानी जोहान केप्लर ने पाया कि ग्रह वास्तव में अण्डाकार कक्षाओं पर चलते हैं।

सूर्य इन दीर्घवृत्त के दो केंद्र बिंदुओं में से एक में है। जैसे-जैसे वे आगे बढ़ते जाते हैं, वैसे-वैसे वे सूर्य के करीब आते जाते हैं, और उनकी गति धीमी होती जाती है।

कुछ दशकों बाद, आइजैक न्यूटन गुरुत्वाकर्षण के अपने नए विकसित कानूनों का उपयोग करते हुए केपलर की टिप्पणियों को साबित करने में सक्षम थे। न्यूटन ने महसूस किया कि ब्रह्मांड में किसी भी दो द्रव्यमान के बीच एक बल है - दो चुम्बकों के बीच आकर्षण के समान।

गुरुत्वाकर्षण वह है जो सब कुछ जमीन पर गिरा देता है और गुरुत्वाकर्षण वह भी है जो ग्रहों को सूर्य के चारों ओर ले जाता है। यह केवल महान गति है जिस पर ग्रह चलते हैं, जो उन्हें सीधे सूर्य में गिरने से रोकता है।

Frits Ahlefeldt

न्यूटन के नियमों का उपयोग करते हुए, आप उस रास्ते को प्राप्त कर सकते हैं जो गुरुत्वाकर्षण बल के तहत चलते समय वस्तुओं को ले जाता है। यह पता चला है कि ग्रह दीर्घवृत्त पर चलते हैं, लेकिन धूमकेतु जैसी अन्य वस्तुएं परवलयिक या अतिशयोक्तिपूर्ण पथ पर यात्रा कर सकती हैं: वे सूर्य के करीब उड़ते हैं और ब्रह्मांड में शूटिंग करने से पहले कभी वापस नहीं आते हैं।

किंवदंती के अनुसार, एक गिरते सेब ने गुरुत्वाकर्षण के बारे में सोचने के लिए न्यूटन को प्रेरित किया। वह सभी समय के सबसे प्रभावशाली वैज्ञानिकों में से एक थे, और उनके विचारों ने लगभग 300 वर्षों तक दुनिया के बारे में हमारी समझ को आकार दिया - जब तक कि अल्बर्ट आइंस्टीन ने 1905 में सापेक्षता की खोज नहीं की।

Archie